

Control of Hybrid (High Voltage) AC/DC Grids

Adedotun J. Agbemuko

INCITE Fellow

Main Location: IREC, Barcelona, Spain

Supervisors:

José Luis Domínguez-García (IREC)
Oriol Gomis-Bellmunt (UPC)

Direction of this Work (1)

Direction of this Work (2)

Harmonic Stability and Interaction

- Expected pervasiveness of PE converters and devices.
- Transmission system as an interconnection of devices.
- Global stability becomes the fundamental issue.
- Complicated when two distinct grids are involved.
- Understanding and insight into harmonic interaction and stability of combined Meshed AC and MTDC grids.

Methodology for Analysis

- Impedance modelling.
- Classical frequency domain analysis.
- State space + frequency domain (large systems).

HVDC Control Basics

Multi-loop control system

HVDC Control Basics

Current controller as the fundamental control system.

Interacts directly with the converter and AC grid.

HVDC Control Basics (2)

AC, DC voltage, power controller as an outer-loop.

 Controls the either the voltage of the AC bus, DC bus, or power injected.

HVDC Control Basics (3)

Reduced control system

Rationale for Impedance Model

- Current controller can be viewed as dynamic impedance.
- Voltage controller can be viewed as dynamic admittance.
- Note: Admittance and Impedance are used interchangeably.
- Why not model the entire system as an impedance?
- Impedance plots are a good predictor of stability.

Why Investigate Harmonics/Resonance?

- Global impedance (control inclusive) changes with any change at all.
- Changes affect the harmonic/resonance points.
- Control parameter particularly affect resonances.
- Shape of impedance functions over frequency.
- Possibility of resonance points moving to the LF region.
- Control system as a means to manipulate impedance.

Impedance Modelling

Inner-loop and AC grid dynamics:

$$i_{c,dq} = H_{cl}^{i} i_{c,dq}^{*} - Y_{oc} U_{s,dq}$$

$$Y_{oc} = \frac{Y_{ac}}{1 + H_{ol}^{i}}$$

Impedance Modelling (2)

• Outer-loop, inner-loop, AC grid dynamics, DC grid dynamics:

$$- U_{dc1} = H_{cl}^{v} U_{dc1}^{*} - \frac{KY_{oc}H_{1}(s)}{1 + H_{ol}^{v}} U_{s,dq} + Z_{ic}I_{dc2}$$

$$Z_{ic} = \frac{Z_{dc,p}}{1 + H_{ol}^{v}}$$

$$Y_{oc}^{v} = \frac{Y_{oc}}{1 + H_{ol}^{v}}$$

 Notice we can actually construct the impedance of a system if we know the eigenvalues of the system.

Extension to Meshed Grid

a. DC side current source bus circuit

b. DC side voltage source equivalent

To have a matrix that describes the DC Side

a. DC side Z-bus circuit

All variables are in s-Domain

$$Z_{bus,dc} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix}$$

$$Z_{11} = \frac{Z_1 Z_2 + Z_1 Z_3}{Z_1 + Z_2 + Z_3}$$

Then...

- The same is done for the AC grid.
- Thus, we can have a whole matrix that describes the network dynamics and control of an MTDC as a single matrix,
- And that of control and AC grid as a single matrix.
- Then, we select the buses that we are interested in with respect to the corresponding AC bus OR analyse the DC bus matrix distinctly for DC side analysis.
- Same applies for AC bus.

Analysis

- Bode plot of open loop gains and influence of parameter sensitivity on frequency response.
- Bode plot of closed loop charateristic equations.
- Nyquist stability criterion.
- Routh-Hurwitz stability criterion

AC output admittance with base control data (Inner-loop)

AC output admittance with base control data

AC output admittance with base control data (outer-loop)

Impedance change from inner-loop to outer-loop

Sensitivity analysis to parameter variation (inner-loop)

Sensitivity analysis to parameter variation (Multi-loop)

Stability based on Nyquist's criterion

Stability based on Nyquist's criterion

Stability based on Nyquist's criterion

Stability based on Nyquist's criterion (Outer-loop before tuning)

Stability based on Nyquist's criterion (Outer-loop before tuning)

Stability based on Nyquist's criterion (Outer-loop after tuning)

Stability based on Nyquist's criterion (Outer-loop after tuning)

Stability based on Nyquist's criterion (Outer-loop after tuning)

Publications (Expected)

- Two conferences accepted awaiting review.
- One journal on parametric sensitivity due in August.
- One journal on DC stability analysis with impedance models expected.
- One journal on AC stability analysis considering synchronous generator and converter controls.

Thank you!

Questions/Feedback

